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Fast solitary waves against slow inertial instability in stimulated Raman scattering
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We investigate the dynamics of the backward stimulated Raman process in optical fibers; the spatiotemporal
(1+1)-dimensional three-wave dissipative inertial model accounts for the noninstantaneous Raman response of
the medium, the optical Kerr effect, and the group velocity dispersion. A different class of dissipative super-
luminous solitary structures emerges from a chaotic Stokes dynamics. In contrast with the nonlinéar Schro
dinger class of equations, the velocity of the solitary wave plays a key role and has been determined by the
Kolmogorov-Petrovskii-Piskunov procedure. The long-term evolution of the three-wave resonant interaction is
ruled by two competing instabilities: the convective Raman instability, characterized by the velocity of the
leading front, and an “inertial instability,” which arises through the combined actions of the Kerr effect and
the noninstantaneous response of the medium. By comparing their relative growth rates we find a criterion that
determines the asymptotic pattern selected by the sy@&elitonlike or chaotiz and give relevant experimen-
tal parameterd.S1063-651X98)02408-9

PACS numbeps): 42.65.Tg, 42.65.Dr, 42.81.Dp, 42.65.Sf

[. INTRODUCTION excitation to respond instantaneously; we will refer to this as
the “standard model” of SRS in optical fibef8]. A family
During the past two decades, the intense research activityf shock-wave solutions of the dispersionless problem has
in the field of nonlinear fiber optics has resulted in a numbebeen identified 10] and an analytical bright-dark solitary-
of breakthroughs that revolutionized the communications cawave pair solution has even been exhibited in the full prob-
pabilities. However, many fundamental aspects of nonlinealem (SRS, Kerr effect, and dispersipfi1].
interactions of light with matter are still poorly understood. (i) In gases, the optical Kerr effect and the dispersion
Of particular interest is the resonant coupling between aman usually be neglected. On the other hand, the response
optical field and the natural oscillation modes of its propagatime of the medium, typically in the picosecond range, is
tion medium, which naturally yields both nonlinear and non-comparable to the characteristic evolution time of the optical
instantaneous responses. The stimulated Raman scatteriagvelopes and the dynamics of the vibrational modes must
(SRS process is a typical example of resonant light-mattetbe taken into account. Their noninstantaneous response is
interaction. described through an additional equation for the material ex-
In optical fibers, SRS exhibits a particularly complex dy- citation, besides the two equations for the optical waves. In
namics, mainly because it is accompanied by the optical Kenthis pure three-wave resonant model the laser pump stimu-
effect, always of the same order of magnitude, and the groufates the scattered Stokes wave through the material excita-
velocity dispersior{1,2]. Simplified models have thus been tion [12,13. Transient SRS was considered in this context
introduced in a preliminary approach of regular temporal[14] and three-wave soliton behavior has been predictét
pattern formation. We can distinguish three main themeand subsequently observétl6]. Moreover, the three-wave
among the vast Raman literature. resonant interaction in presence of dispergimndiffraction)
(i) In the context of short pulse propagation in opticalis of particular interest at present in nondegenerate paramet-
fibers, SRS was first considered as a perturbation to the opic interactiong17].
tical Kerr effect and group velocity dispersion. Its modeling The purpose of this paper is to investigate the solitary-
then calls for a perturbed nonlinear Sctlirger(NLS) equa-  wave dynamics of the stimulated Raman backscattering pro-
tion, which allows an improved description of intrapulse Ra-cess in the frame of a more general “inertial model” ac-
man scattering, including the self-frequency shift observedtounting for the noninstantaneous Raman response, the
during optical soliton propagatiofB,4]. Stationary shock- optical Kerr effect, and the group velocity dispers[@p. To
wave solutions have been exhibited in both the norfpasi-  a certain extent, this work bridges approackiesand (iii )
tive) [5,6] and anomalousinegative dispersion regimes discussed above. A different class of stable three-wave co-
[7,8]. herent solitary solutions is presented. Inferring from the
(i) In SRS lasers or amplifiers, two optical componentswell-known NLS-like soliton dynamic$6], one should ex-
are spectrally distinguishable, namely, the pump and its scapect that thevelocityof the traveling-wave solution would be
tered Stokes wave. The problem is more complicated and igrelevant. It is indeed the case for the SRS solitary structures
usually described through two coupled NLS equations acelescribed by the standard model; however, in the inertial
counting for the Raman process but assuming the materiahodel, the three-wave resonant interactlmeaks the exis-
tence of the gauge transformatiosesponsible for this prop-
erty. The velocity of the solitary wave thus becomes a rel-
*Electronic address: montes@unice.fr evant parameter even in dispersive media. In order to analyze
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its selection mechanism, we extend the Kolmogorov-as well as solitonic behaviof&5,26. We are interested here
Petrovskii-Piskunov procedufd8-20, which proved quite in the resonant case, where the SRS process couples a pump
powerful in nonlinear diffusion problem$§21,22. These Ey(w,,kp) and its backscattered Stokes wavg wgs,ks) to
three-wave solitary structures are intrinsically dissipative anc material respons&,(w,=w,— ws,k;=K,+Kg) propor-
proved to be robust with respect to external perturbationstional to the molecular polarization and with the dimension
they can be considered asdtractors in spatially extended of an electric field. The three coupled equations thus read in
media. dimensionless units

We also distinguish the usual convective Raman instabil-
ity and a different “inertial instability.” The former origi- ; __ ; 2 2
nates in the three-wave coupling and is characterized by the 1T It ipdut np)Bp BsBatinl[Bpl™+2|BsEy
velocity of the leading fron{Sec. 1V); it can be saturated by (1a)
the depletion of the pump. The inertial instability, which is
analyzed in Sec. V, can avoid the depletion of the pump. It (di— dx+ipdy+ pns)Es=E E} +ik[|Egl*+2|Ey|*]Es,

originates in the coupling between the optical Kerr effect and (1b)
the noninstantaneous material response and thus arises even
in the absence of dispersion; this is a major difference from [(1+2i pa) dy+ pra]Ea=EpES (10

the well-known modulational(Benjamin-Feif instability,
which is intimately related to the group velocity dispersion . .
[9]. v_vhere the complex envelqpe amplltudﬁs——|Ei|e'_¢S and the
The long-term evolution of the three-wave interaction islime t, spacex, and damping ratey; are normalized to the
ruled by the two competing instabilities. When the growthconstant pump inpuEq=|E.,| and to the SRS coupling
rate of the inertial instability dominates, the interactionconstantK (=509 msec'V ™" in silica fibers [E;/Eq
evolves asymptotically towards a chaotic dynamics. Other—Ei, tKEo—t, XxcKEy/n—x, and %(KEp) *—x; (i
wise, the system self-structures in a three-wave solitonlike= P,S,a)]. n is the linear refractive indexeffective index
behavior. This self-similar superluminous motion thenn=1.46 and the Kerr parameter=n,w,Ey/2nK is propor-
emerges from the chaotic dynamics, which propagates at tHénal to the nonlinear refractive coefficiemt, (=1.22
luminous velocity; the velocity of the leading front of a pulse X10° 2 m?V?.  The dispersion parameter isp
thus governs its whole asymptotic dynamics. =k"KEoc/2n, where k"=d%k/dw?, ~and finally o
=(KEy/2w,) appears as a detuning parameter. We also de-
fine the phase mismatch= ¢,— (st ¢,) (Appendix A).
Il. INERTIAL MODEL The nonlinear Raman and Kerr processes can be quantita-
N . . tively compared in steady regimé¢er in the frame of the
Iin(;?nslr%?)gggtrgr? nt?]';“r(;?)%rc;ﬁzgzSascé)nerggbdagggﬁbéodth%tandard model, obtained_ thr_ough the adiabatic approxima-
. oo ! 8on of Eqg. (10)] by replacing in Egs(1a and (1b) the ex-
weakly interacting wave packets through the slowly varying . " X, s
envelope approximation. The equations governing the evoILPreSS'O”Ea_ I.EPES/'“j’ in fibers, the)i argzalways of _the
tion of the optical fields are derived following a usual ap- same order since =4 (V\{hereas<Ma= 10" and the dis-
proach that leads to NLS-like equatiof&| and takes into persion can be negl_e_ctgd_ in the .SBS gase
account the Kerr effect and the group velocity dispersion. In very long (semi-infinitg media, a constant pump level

Since the material response time is very sliabout 75 fs in IS necessary to compensate for th_e optical _and material
silica), it is neglected in most models of stimulated Ramandampmgs, but can be achieved in a simple configuration only

scattering in fibers as the typical pulse width lies in the pi-if one neglects the damping of the pump wave. We will thus

cosecond range and above. Most recently, more complef@ake this apprqximatiqn;(p_=0) Whi.Ch is locally _Iegitimate
models have underlined the relevance of the noninstantaneigg ang as the interaction timégractically, the,‘iv'dth of the
of the medium response when the pump and Stokes wavé@nsidered structurgare small compared tp., ", a condi-
can be distinguishefl]. We have discussed this approxima- 10N always verified in low loss optical fibers.

tion in a previous work and shown that this nonlinear inertial

response can dominate the linear group velocity dispersion IIl. NUMERICAL THREE-WAVE DYNAMICS
even in the picosecond regime for strong enough pump pow-
ers (typically several watts[2]. In polarization-maintaining One cannot exhibit explicit analytical solutions of system

single-mode fibers, effective parameters account for the ful(1) since the dissipative three-wave model is not integrable
space-time dynamics of SRS through this one-dimensiondR7]. Before looking for an alternative theoretical analysis,
inertial model, which describes the Raman process through let us first investigate numerically, in the frame of the inertial
resonant interaction between the optical fields and the naturahodel and for various initial conditions, the existence and
vibrational modes of the medium. An additional equationrobustness of solitary-wave solutions. In this paper, for the
describes the excitation of a collection of harmonic oscilla-sake of simplicity, we will discuss only the normal disper-
tors coherently driven by the applied optical fi¢RB,4]. sion regime, in which no solitary solutions have been exhib-

While most previous studies dealt with forward SRS, weited in the frame of the standard model of SRS. Our basic
will consider the backward configuration also of interest forproblem, of particular interest for amplification devices, is
SRS'’s sister interaction, namely, the stimulated Brillouinthe propagation of an initial localized Stokes puldgg
scattering(SBS for which earlier studies have revealed a =sechkX)] with wave-front slopek, in the presence of a
rich nonlinear dynamics, including spatiotemporal chi@s§  counterpropagating continuous pump.
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solitary wave. The luminous localized defect slides on the superlu-
t = 11001 minous tail of the solitary structure.
r objects, the former being asymptotically stable and the latter
, t=1400 rapidly damped, since the depleted pump is insufficient to
40 60 80 100 120 compensate for the losses in the trailing edge. As in the SBS
t+x case, this decoupled evolution strongly contributes to the ro-
. . . bustness of these dissipative solitary struct(iz<s.
FIG. 1. Self-structuring of a three-wave solitary solutjoru- The solitary solution presented here is valid in the normal

merical computation of Eqg1) (k=0.35) in the luminous Stokes dispersion regime and is thus completely different in nature
reference fram (a) transient amplification stage afi) asymmet-  from the solution exhibited in the frame of the standard
ri(; solitary.structure, whose superluminpus velgcity is aSSOCiateqnodeI[ll]. The latter still depends on a Kerr-dispersion bal-
with the drift towards the left of the luminous windoffor better 50 “characteristic of the NLS-based equations, while the
visibility, E, has been magnified>s). SRS compensates for the losses: the Stokes and pump wave
must have bright and dark soliton profiles and propagate,
respectively, in the anomalous and normal dispersion re-
We solve numerically Eq91l) by following the charac- gimes. On the other hand, the present solution is closer to the
teristics in the comoving Stokes frami26], the optical dis- regular three-wave solitons observed in gaskg, even if
persion being obtained by a five-point finite differencethe dissipation is strong and the intensity profiles are affected
schemg27]. In Fig. 1 we plot the typical evolution in the by a complicated phase dynamics induced by the Kerr and
normal dispersion regime k(=1 ps/km) of a sechant dispersion effectéwhile the pure three-wave resonant inter-
Stokes shape of slopge=0.35, which corresponds to a 25-ps action involves only real amplitudd43,26).
pulse for a peak amplitudés= 10 MV/m and the same con- The solution in Ref[11] is characterized by a full recon-
tinuous pump level. During the first stage of the interactionstruction of the pumpthyperbolic tangent which is thus
(t<100), the Stokes field and the material excitation areable to destabilize the far tail of the Stokes pulse. This is not
amplified in the parametric regime, here defined by a nearlghe case here: The solitary-wave trajectory in the phase space
constant pump wavieE,(x,t) =1]. In a second time the total links anunstablefixed point(far leading front|Ey|=1, Es
energy of the Stokes and material fields becomes sufficient tes E;=0) to a fix point with a pump power below threshold
deplete the pumpt{200). The backward configuration (far pulse tail: [Ep|=0, Es=E,=0) and thus is always
breaks theé — —t symmetry of the problem and gives rise to stable Locally, the passage of the solitary wave can be de-
an asymmetric amplification process: The leading edge o$cribed as théransition of the system toward a stable state,
the pulse follows a strong amplification to the detriment ofwhich again emphasizes its robustness.
the trailing edge where the pump is depleted, yielding super- Let us note the strong asymmetry of the Stokes envelope
luminous Stokes and material fronts. In the long-term evoluthat characterizes the dissipative nature of the solitary-wave
tion, the system self-structures in a superluminous threesolution[30]. In fact, the dissipation is intrinsically related to
wave solitary structure of constant width. This the noninstantaneous response of the medium, as can be seen
superluminous solitary motion can be viewed as the result oih Eq. (1¢), where,u;l represents the lifetime of the material
the convective amplification of the leading edge of theexcitation. A specific invariant characterizes the solitary mo-
Stokes and material pulses, whereas their rears are attenuateth. We show in Appendix B that the pulse energy of the
[25]; no information can be transported via tpisise reshap-  Stokes and material fields, defined\&g .= f*7|Eg,|%d,
ing procesq28]. Figure 2 describes the evolution of a nar- satisfy the relationship
row structure artificially superimposed on the solitary solu-
tion; in the (luminous reference frame of the Stokes energy,
we observe the separation of a stationary localized defect
that propagates at the luminous velocity from the solitary
wave drifting away with its superluminous velocity. The where é&=—x and r=t+x are retarded variables. Due to
solitary structure and the defect behave as two independettieir conservative nature, the optical Kerr and dispersive ef-

A. Solitary-wave self-structuring

+

a‘fWS: 2M3W3_2M5WS+ 4i a,uaf EZU"TEadT, (2)
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FIG. 3. Profiles of the moduly&, ¢ and phases sim, 5, in the
solitary regime for(a) t=1000 and(b) t=1600. The three phases
follow a complex dynamics, but the phase mismatchd®asmains
constant.

FIG. 4. (a) Phase portrait of the complex Stokes field in the
solitary regime {=1400). The rotation of the phase is inverted at
point A. (b) A zoom of A.

_ _ _ _ solitary wave. This complex dynamics contrasts with the
fects do not play any role in this relation. A solitary-wave smooth phases characteristic of NLS like solutions.
behavior calls for the three fields to be in their asymptotic
steady state, thug;Ws=0 and Eq.(2) yields the expression B. Solitary-wave emersion from chaotic dynamics
of the invariant; it has been used as a criterion for the

asymptotic nature of the solitary solutions and to check the FOr shorter pulses the three-wave interaction becomes in-
accuracy of the numerical scheme. coherent and is no longer able to kekgonstant. We plot in

Fig. 5 the evolution of a secant Stokes pulse ten times nar-

_ _ rower than in the previous case. The asymptotic evolution of

Phase dynamics of the solitary wave the Stokes wave packet is completely different. The amplifi-
We plot in Fig. 3 the profiles of the moduldJEp,sl of the cgtion_of the Stokes wave is acqompanied by an asymmetric
optical fields and their respective phasés s, in the distortion that evolves asymptotically towards an erratic be-
asymptotic solitary regime for two values of the interactionhavior and the overall width of the structure keeps increasing
time. The key parameter characterizing the coherence of the

three-wave interaction is the phase mismafehThe simu- S Eg Ct-0
lations show that, despite the compléxut fairly comple- . £

mentary phase structure of the Stokes and the material B £ .
fields, ® remains almost constant over the whole interaction I /_,%\/ ° =200 |
range. It is worth noting that this classical feature of the pure v

three-wave resonant interaction is still valid in the presence - 1
of optical Kerr and dispersion effects, despite the fast rota- . /'\"'WWW_\ t =400 -
tion of the phases they induc@Appendix A). Between _ — ]
t=1000[Fig. 3@] andt=1600[Fig. 3(b)], the three moduli - WMM t =600 -
remain unchanged, but the phases evolve rapidly. The con- . T ' :
cept of attractor is strongly related to the dissipative nature 0 0.5 1 15 2

of the interaction and thus is valid only as far as the modulus

is concerned. The apparent Stokes frequency is stable in the
body of the pulse, but rapidly evolves in its trailing edge. We  FIG. 5. Same as Fig. 1, but with a ten times narrower Stokes
plot in Fig. 4 the phase portrait of the Stokes field in its ownpulse k=18). The inertial instability appears at the peak and yields

reference framgReEg, Im Eg] at timet=1400. The rotation asymptotically a chaotic behavior, while the pump remains essen-
of the Stokes phase is inverted on a particular pgiof the  tially undepleted.

t+x
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in time. The chaotic nature of the dynamics has been con- r /\ t =1500
firmed in Ref.[2] through the exponential divergence of a

perturbed solution from the unperturbed one. Here we focus E E
our attention on the origin of this inertial instability, which %Q\ t=2090 ]
becomes dominant at strong pump power and whose creation 60 ?o 160

is directly related to the coupling of the Kerr effect with the
noninstantaneous response of the medium, as will be demon-
strated in Sec. V through a stability analysis. Unlike the FIG. 7. Same as Figs. 1 and 5, but with an intermediary initial
usual modulationalBenjamin-Feiy instability that originates  pulse &=0.75): (a) onset of the inertial instability angb) the
in dispersive Kerr mediathe inertial instability can grow superluminous front emerges from the chaotic dynamics and a
even in the absence of group velocity dispersion solitary-wave attractor self-structures.

Let us remark that in contrast to the previous case ana-
lyzed in Fig. 3, the intensity and the phase of the pump fieldamplification process can thus happen: The leading front of
remain almost constant in the whole interaction regig ( the Stokes pulse follows a strong amplification to the detri-
=1). This is a consequence of our counterpropagating corment of the trailing edge where thikepleted pump is unsuf-
figuration: The total energy of the Stokes pulse is not suffificient to sustain the interactiofTherefore, the inertial insta-
cient to affect noticeably the pump evolution during the shortility cannot fully develop and is relegated to the trailing
interaction time, comparable to the pulse widthispersive edge of the pulse, while the wave front asymptotically
walkoff may yield a similar effect for shorter pulses in the reaches a steady solitary attractor propagating with a con-
copropagative schemeOn the contrary, the dynamics of the stant superluminous velocity.
Stokes wave and the material excitation is rather complex In summary, due to its superluminous nature, the regular
(Fig. 6,t=400). The interaction is coherent at the wings of part of the three-wave structure drifts away from its chaotic
the Stokes pulsed§=0): The phases follow a regular evo- part, which propagates at the luminous velocity. This idea is
lution along the propagation. However, with higher Stokesthe same as for the separation of a defect whose characteris-
intensity, the peak of the pulse develops the instability thatic time shorter than the width of the solitary structure allows
evolves towards a chaotic behavior. In this regid=0:  a decoupled evolutioriFig. 2). The chaotic behavior pre-
The chaotic dynamicBreaks the phase matchimdthe three  sented in Fig. 5 is also characterized by a short time scale
waves; the pump-to-Stokes conversion efficiency can eveand similarly slides on the pulse tail at the luminous velocity
be averaged to zero, thus avoiding the depletion of the pumip be damped in a finite time.
This situation remains unchanged even for long propagation
distances.

t+x

IV. ASYMPTOTIC ANALYSIS

Superluminous drift So far we have qualitatively established that a variation of

The asymptotic evolution of the three-wave interactionthe initial condition, such as the width of the injected Stokes
seems strongly related to the initial Stokes pulse width. Theulse or the pump intensity, drastically affects the spatio-
fully developed solitary and chaotic patterns presented inemporal evolution of the three-wave interaction and that the
Figs. 1 and 5 correspond, respectively, to an initial wavevelocity of the structure has a key role in its asymptotic
front slopek=0.35 and 18. We also investigate intermediatebehavior. The problem is now to find a quantitative criterion
values. Figure 7 illustrates the evolution of the three waveso describe theselectionbetween the solitary and chaotic
for k=0.75, all other parameters being the same as in Figs. lkehaviors. One parameter that seems to play a fundamental
and 5. The first stage of the interaction follows a scenarigole is the growth rate of the inertial instability. Also relevant
similar to that in Fig. 5 and the inertial instability appearsis thevelocityof the leading front of the Stokes field, which
(t=300). Nevertheless, the overall Stokes energy is novwean be understood as the growth rate of the SRS convective
sufficient to deplete noticeably the pump. The asymmetridgnstability.
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A. Velocity: A relevant parameter struction, in the linear undepleted pump regime. If and when
a solitary regime is reached, this value is necessarily the

Brillouin and Sommerfeld define thegnal andfront ve- .
locities at which the half-maximum wave amplitude and theVEIOC','[y of the whole str}Jcture. Note thite KPP procedure
describes only the leading front of the Stokes faid gives

leading front of a wave packet would move, respectively-*> : g T o e
[31]; the former is of interest to describe the “luminous” MO information on the inertial instability that may arise in the

instability discussed above, while the latter characterizes thBody Of the pulse.

behavior of the evading “superluminous” part of the pulse. ASSuming an undepleted pump waug,¢=1) and consid-
ThereafterV will denote the front velocity. In the case of a €7ng only the low-amplitude region where the nonlinear Ra-

solitary structure, both are equal to tigeoup velocity at ~Man and Kerr processes can be linearized, Efjscan be
which the peak of the pulse would move, but generally not tgV"tten

the energyvelocity [28]. P A + —
A fundamental difference distinguishes the solitary solu- (O oxtipdyt us=20K) (0t pa)Bsa=Esa- ()

tions reported in classe$) and (ii) of Sec. I, which result  The solution of this linear problem may be expressed as
from a generalized NLS problem, from the characteristic so-

lutions of the resonant three-wave problem reported in class ~
(iii). It is straightforward that any solution of the NLS Es(X,t)=f Es(k)exd y(k)t]exp(kx)dk, (6)
equation ¢
iu,=2uy+|ul?u (3)  Wherekis complex andEs(k) is the Fourier transform of the
initial Stokes field;y= y(k) is obtained through the complex
satisfies the gauge transformation dispersion relation that characterizes the linear prollEa
cexpit+kx)]:
u(x,t—x/V)=u(x,t)exdi(x/2V2+t/V)]. (4)
(y—k=2ix+ipy’+ug)(y+pa)=1. )

This means that the search for solitary-wave behavior can be
limited to the luminous velocity\{=1) case because “mov- Looking for traveling-wave solutions with velocity [ 7= x
ing” solutions (V#1) are derived from luminous ones +Vt, v=t], we write
through the transformatiot¥) [6]. We checked it even in
complex representations such as the standard model of SRS.
Therefore, a given solitary solution of a NLS problem, char-
acterized, for instance, by the pulse width, can travel at any
velocity, which is thus irrelevant. This linear solution holds for long interaction times and
The situation is completely different if one considers thEines the asymptotic velocity of the pulse wave front. The
pure three-wave resonant interactign=0, «=0) which initial Stokes envelope has an exponential leading front and
breaks the existence of the gauge transformatiba shape ihe funcﬁonﬁs(k) has a pole fok=k,. In fact, as a result
of the solitary wave being thus intimately related to its ve-of the three-wave parametric instability, the asymptotic
locity [13,26]. The inertial model presents the ingredients of\yaye-front structure grows exponentially. On the other hand,
both NLS and three-wave problems. The velocity of t_he $0|i'the functionf (k) = y(k) —kV has a saddle point and the in-
tary wave thus becomes a relevant parameter even in dispaggral (8) can be calculated by the steepest descent method;
sive propagation media. the competing contributions of the pole and the saddle point
are described in detail in R€f26]. It can be shown that the
B. Kolmogorov-Petrovskii-Piskunov procedure: Front velocity saddle point is the dominant contribution only for extremely
selection short initial Stokes pulsestypically in the femtosecond
range where the slowly varying envelope approximation is

When a physical system presents an instability, it is im- ¢ AN ;
portant to understand how it will evolve for long interaction vu_)lated and the pr_esent analysis IS |rr_elevant. Then,_for Situ-
tions of physical interest for the inertial model, the integral

times and then how the nonlinear stage of the interactiof? ) L
might saturate the instability. This problem has been dis!S @lways dominated by the contribution of the pole of the
cussed by Kolmogorov, Petrovskii, and Piskunov in the confunction Eg(k). The computation of E¢(8) then reads

text of nonlinear diffusion problems.8]. The Kolmogorov- ~

Petrovskii-PiskunoWKPP) method allows us to determine Es(7,v)xEg(k=ko)exf y(ko) —koV]v exp(kon). (9)

the asymptotic velocity of a front, when the transient have _ . . .
died out, through a linear analysis. Of particular interest forlt describes the asymptotic behavitarge ») of the leading

nonintegrable equations, it has been successfully applied 50Nt of the Stokes envelope where the parametric approxi-
the pure dissipative three-wave interacti@®]. Above the ~Mation is always valid E,=1). As discussed beforéFig.

SRS threshold, the Stokes wave is unstable, exponentially): e phases areot stationaryin the moving reference
growing in the linear parametric regirfi€(x,t)=1]. When rame of velocityV, even when the superluminous attractor

the instability is saturated by depletion of the pump, a solils already attained. Therefore, the steady-state condition of

tonlike structure can appear, as discussed above. The KPPe solution(9) holds only for the amplitud¢Eg| and reads

asymptotic procedure then allows us to deternmabeinitio R ko)
the front velocity in the linear parametric regime since the V* (Kg) = M
leading edge of the Stokes envelope always remains, by con- Re(ko)

Es(n,V)=fCEs(k)ede(k)—kV]V expkn)dk.  (8)

(10
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Neutral velocity of the chaotic structure

Even if the whole nonlinear solitary structure reaches the

1 004 asymptotic steady state only after a long transigngs. 1

and 7, the KPP procedure assumes that the pulse wave front

1.003 travels at the velocity/* (ko) from the very beginning of the

interaction if its initial shape is exponential, which is true

1.002 even when the body of the pulse exhibits a chaotic evolution.

Therefore, the KPP method always allows us to determine

1.001 V*, even in the chaotic cas&Ve see here its discriminating

5 15 20 role: For a short initial Stokes pulgiargekg), V* (ko) is too
small for the structure to drift away from the chaotic aréia

kO is thus crucial to evaluate the growth rate of the inertial in-

stability in order to compare it t¢* —1 and determine the

FIG. 8. VelocityV* vs wave-front slopé, evaluated from Eq.  |ong-term evolution of the three-wave interaction.
(10). The steeper fronts travel more slowly than the smooth ones.

V#*

o V. INERTIAL INSTABILITY
[whereas the phase velocityV&,=Im y/Im k and the group

velocity V4= d(Im y)/a(Im k)]. The front velocityV acts as a In this section we thus focus our attention on the instabil-
stabilizing parameter in Eq9): V<V* corresponds to an ity that arises on the top of the Stokes pulse as discussed in
exponentially growing pulse and>V* corresponds to a Sec. lll B. We investigate the nature of this kind of instabil-
damped solution. Relatiofl0) thus defines ameutral veloc-  ity, which is intimately related to the combined actions of the
ity, for which the leading edge of the traveling wave neitheroptical Kerr effect and the noninstantaneous response of the
grows nor decays in an amplifying mediufthis quantity, ~Propagation medium.
although unusual in optics, is useful in nonlinear diffusion The stability analysis is carried out following the usual
problems[21]). procedure outlined in Ref9] for the modulational instabil-
Thus, whenever a steady regime is attained, the velocitity. The numerical simulation reported in Figs. 5 and 6
of the three-wave solitary structure must be exadffy, ~ shows that the modulus and the phase of the pump wave
which in turn is uniquely determined by the initial wave- remains constant as the Stokes field develops the instability.
front slopek, of the Stokes pulse. For a given set of param-This approximation holds even for large propagation dis-
eters (us,,p, k) the system is able to self-structure into a tances; it allows us to s&,(x,t) =1 in the whole interaction
continuous family of dissipative structures characterized byange. Equationsl) then take the simplified form
the wave-front slop&, and the corresponding neutral veloc- . .
ity V*(ko). If we neglect the group velocity dispersidp [(1+2iapa)d,+ pallde+ipd + uslEs
=0), we can generalize the expression obtained in R =Egtik[(1+2iapmy)d,+ uall|Eg2+2]Es, (12
for the pure three-wave resonant model and derive an ex-
plicit analytical solution forV* accounting for the optical where ¢&=—x and r=x+t still are the retarded variables.
Kerr effect: Equation(12) describes the propagation of the Stokes field in
the linear Raman regimén the presence of the noninstanta-
Ki—pa— gt neous response of the medium, group velocity dispersion,
V* (k)= - k. (1) and Kerr nonlinearitfwhereas in Eq(5) both Raman and
' Kerr processes were lineariZedn order to get more physi-
cal insight, we will take into account only minimumset of
physical ingredients and neglect the amplification of the
Stokes envelope; this supposes that the Stokes envelope
I=2+162— 242+ 1 \[4(1— <2) + 672+ 16265, reaches a quasicontinuous lev@h Fig. 5 E=1.8 at't
=400), conserved from then on. We therefore assume that
MHaps=1 and write

where

0=k, + pta— us.
. . . ‘9§ES: _iXaTTES_(1+iﬁ)[‘97§+ixa777+ &T]ES
A formal calculation gives a much more complicated ex- _ _ )
pression ofV* whenp#0; we plot in Fig. 8V* versuskg +in[1+(1+iB)d,][|Eg*+2]Es, (13
for the same value op as in Figs. 1 k,=0.35) and 7 Kq ) _ )
—0.75).V* has also been evaluated numerically for a num-where the space and time variables have been normalized

ber of realizations. The discrepancy oo Vim/ Vi, be-  (Th—=7 fu—& andy=xu,, X=pug andB=2au,. In
tween the numerical and theoreti¢&q. (10)] values ofv*  the stationary case, E¢L3) reduces to
was always lower than 0.1%. Theteepesfront (large ko) . 5
travelsmore slowlythan the smooth front. This is a generic I¢Eg,=1 77[|E50| +2]Es,,
result, also found for the amplitude or Swift-Hohenberg o

equationg 22]; however, in this last case, only the steepestVhose solution is given by

front is stable since the initial condition is spatially bounded .
[26] Pty Eq,(6)=0 exdlin(a?+2)€], (15

(14)
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FIG. 9. Inertial instability growth rate vs modulational perturba-
tion w and Stokes amplitude (analytical,p= x=0).

whereq= Eso(§= 0). We will now consider the evolution of
the perturbatiora defined afEg= ESO(§)+a(§, 7); lineariz-
ing Eq. (13) with respect taa yields

(9§a: _iXaTT_(1+i:8)[aT§+iXaTTT+ aT]a
+ig[ma+ Egoa* +(1+iB)(md,a+ EéOaTa*)],
(16)

wherem=2(g2+1). In order to avoid th(EéO terms we use
the variable d(&7)=a(& 7)exdin(g®+2)¢]. Dividing
d(&,7) into its real and imaginary partsl&Eu+iv) and con-
sidering the usuahnsatz d=d, exphé+iwT), we get the
dispersion relation

{ioB(N+1)—[27909%+ yw?](1+iw)}
X[ xw?(1+io)—iBw(\+1)]
=[N1+iw)+tio+iw®By]

X[N1+iw)+io+tioB(xw®+279%)]. (A7)

The stationary solutioli15) is unstable with respect to a
perturbation of frequencw wheneveri(w) has a positive
real part. The growth rate of the inertial instabilit@

=Re\ is a symmetric function of the sideband detuning
Figure 9 represents the dependenc&an w and the Stokes
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FIG. 10. Same as Fig. 9, but in the presence of normal group
velocity dispersion.

occur. The growth rat& decreases as the relative weight of
dispersion and inertial SRS increases.

The peak gainG,. is obtained forwg=70 in units of
time (KE,) ! corresponding to the normalization adopted in
Egs. (1) and in the numerical simulations. Therefore, the
characteristic time scale of the instabiliy, * is much
smaller than the widthy, of the Stokes puls(awglztolzo in
Fig. 5. This point justifiesa posteriorithe assumption of a
stationary Stokes wave, which allowed our stability analysis.

This analysis gives information on the nature of the insta-
bility but does not describe the long-term evolution of the
interaction that proved to be chaotic in some cd2¢sNev-
ertheless, it is worth noting that its time scalg ! fits fairly
well the typical time scale of chaotic dynamics. This sug-
gests that further insight might be obtained by means of a
modal truncation of Eq(12) to a finite number of harmonic
component$32].

VI. DISCUSSION

The analytical tools developed in Secs. IV and V now
allow us to compare the relative weight of the Raman and
inertial instabilities. As expected, the ratig{—1)/G deter-
mines the asymptotic evolution of the three-wave interaction,
G being evaluated in units of timeKE,) ~* [normalization
adopted in Egs(1)]. WhenG>V* —1 the inertial instability

amplitudeq in the absence of the group velocity dispersionovercomes the Raman instability and the interaction evolves
(x=0); the other parameters are those used in all previougsymptotically toward a chaotic regim{e Fig. 5 q=1.8,

simulations. Below a cutoff frequenay .y, the instability
occurs without threshold for any. The potentially unstable

G=4x10"3, andV* —1=8.5x 10 °). In the opposite case
the large velocity of the leading front is responsible for pump

frequency band enlarges as the Stokes amplitude increasatepletion, which freezes the inertial instabiliin Fig. 7 q

The maximum growth rat&,, ., is also an increasing func-
tion of g and of the cw pump levdt,. The stationary solu-

=25,G=6x10 3 andv*—1=17x103).
Thus the asymptotic evolution of a given initial condition

tion is then unstableven in the absence of the group velocityis fully determined and predictable through a linear analysis

dispersion
We plot in Fig. 10 the instability growth rat& in the

ab initio, in very good agreement with the nonlinear numeri-
cal simulations. We verified that the KPP assertion, although

presence of the same positive dispersion as in the numericedrely stated explicitly in nonlinear optics, still holds in the
simulations. Its main feature is to introduce a lower cutoffrather complex case of interest for stimulated Raman process
frequency wmin, below which the instability is quenched. in fibers, namely, for the strong three-wave interaction in the
The noninstantaneous response of the medium then destalpresence of the optical Kerr effect and chromatic dispersion.
lizes the stationary solutioeven in the normal dispersion Here it means that the particular front slope corresponding to
regimewhere conventional modulational instability does notthe neutral velocity* is selected from the very beginning
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of the interaction and remai.ns the front velocity of the whole Ap(dy+ t9x)¢p+Pt9ttAp—PAp(t9t¢p)2
structure up to asymptotic times. Moreover, we could extend
the predictive power of this assertion by comparii— 1 =AgA, sin @+ k(AZ+2A9A,, (Ald)
to the gainG of the inertial instability, which has no thresh-
old and is also active from the beginning. As(0y— 0y) pst pdyAs— pAs(dips)?
The transition from the chaotic to solitonlike structures ) 5 )
might be observed in a typical backward amplification ex- =ApAa sin @+ k(Ag+2A0)As, (Ale)

periment. For a typical fibe(effective area approximately .
equal to 10Qum? at A=1.32um), the required continuous Aadipat 2aa0iAa=ApAs SIN D. (ALf)
pump power, quite strong but still acceptable, is around 2 Wrhe amplitudes and the phases are resonantly coupled
for a length of 300 m. A subpicosecond sech-like signakhroygh the phase mismateh. The system generally tends
should break down in a very irregular, poorly amplified out-1q maximize the pump-to-Stokes conversion efficiency and
put pulse, whose erratic shape would be very sensitive to thg, ;s to selecd=0 for which the SRS gain isnaximum
initial conditions and vary from one realization to another.q, — . corresponds to reverse energy transfer from the
On the other hand, longer signals, typically 10 ps and abovegigkes to the pump wave.

should yield solitary-wave behaviors and very repetitive out-

puts after an efficient amplification. APPENDIX B

VIl. CONCLUSION Starting from Eqs(1), we multiply each equation by the
corresponding complex conjugate field, yielding
In summary, we have investigated the dynamics of the
SRS process in the frame of the inertial model. We have (20,—d¢+2up)|Ep|?=—EsE,E} —ipEjd,Ep+c.c.,
presented a class of dissipative coherent three-wave solitary (Bla)
structures that arise through a balance between three distinct

2__ *E* *
physical processes: the stimulated Raman scattering, taking (d¢+2ps)|Ed =EpEaEs—ipEsd Estc.c,

into account the noninstantaneous material response, the op- (B1b)
tical Kerr effect, and the dispersive effect. The three-wave 2 * ko *

’ . " d,+2 E.|“=E E;ES—2i E.0.E
resonant process breaks the gauge transformation specific to (9:+2p2)|Ed pa™s FHaadr-a
the NLS class of equations. The velocity of the solitary wave —iaE,d,,E} +c.c., (Blo)

then plays a key role and governs the long-term evolution of

the three-wave interaction, through an original evasion prowhere{= —x andr=t+Xx are the retarded variables and c.c.
cess, luminous defects or chaotic tails being left behind bydenotes the complex conjugate. The energies of the material
the solitary structure whenever its superluminous velocity isand Stokes fields are proportional to

sufficient to take over the instability growth. Besides this o
solitonlike motion, the Kerr process coupled to the nonin- sta:f |Esal?dT. (B2)
stantaneous response of the medium yields a different kind

of inertial instability that evolves asymptotically towards a
chaotic behavior.

— oo

Integrating in time the above expressions and assuming the
Stokes and material envelopes to be localiZésks (7
— +00)=0] yield

APPENDIX A
+ 00
Representing the complex fields by their real ampli- W= 2 W, — 2 usWg+ i e J E*9,E.d7.
tudes and phasepE;=A; expli¢)] and considering the €S ae ST U
phase mismatckb = ¢, — (ds+ ¢,), We can rewrite system (B3)
(1) as When the three fields reach an asymptotic steady state, the
(9 ) Ap— 2P0 A,y bo— PAL It by — oA integrated Stokes energy becomes constant and(ES).
bR CopTTe FEPTTR e yields the expression of the invariant
=—AdA, cosD, (Ala)
+ o
(0y— d) As— 2pdAsdips— pAsdnds— ishs I=— pusWst+uaWat2iau, f B EXd.Edr. (B4
=ApA, cosD, (Alb)

Note that [TZEXg,E.dr=—[T297EXEd7; therefore,
IR~ 2amaPadidat aPa=ApAs COSP,  (Alc)  [T7EX4.E.d7is a pure imaginary number.
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