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Fast solitary waves against slow inertial instability in stimulated Raman scattering

Antonio Picozzi, Carlos Montes,* and Eric Picholle
Laboratoire de Physique de la Matie`re Condense´e, Centre National de la Recherche Scientifique, Universite´ de Nice–Sophia Antipolis,

Parc Valrose, F-06108 Nice Cedex 2, France
~Received 5 March 1998!

We investigate the dynamics of the backward stimulated Raman process in optical fibers; the spatiotemporal
~111!-dimensional three-wave dissipative inertial model accounts for the noninstantaneous Raman response of
the medium, the optical Kerr effect, and the group velocity dispersion. A different class of dissipative super-
luminous solitary structures emerges from a chaotic Stokes dynamics. In contrast with the nonlinear Schro¨-
dinger class of equations, the velocity of the solitary wave plays a key role and has been determined by the
Kolmogorov-Petrovskii-Piskunov procedure. The long-term evolution of the three-wave resonant interaction is
ruled by two competing instabilities: the convective Raman instability, characterized by the velocity of the
leading front, and an ‘‘inertial instability,’’ which arises through the combined actions of the Kerr effect and
the noninstantaneous response of the medium. By comparing their relative growth rates we find a criterion that
determines the asymptotic pattern selected by the system~solitonlike or chaotic! and give relevant experimen-
tal parameters.@S1063-651X~98!02408-8#

PACS number~s!: 42.65.Tg, 42.65.Dr, 42.81.Dp, 42.65.Sf
iv
be
ca
ea
d
a

ga
n
er
tte

y-
e

ou
n
ra
e

a
o

ng

a
e

nt
ca
d
ac
er

as

has
-
b-

ion
onse
is

cal
ust
e is
ex-
. In
mu-
cita-
xt

met-

ry-
pro-
c-
the

co-
he

e
res
tial

el-
lyze
I. INTRODUCTION

During the past two decades, the intense research act
in the field of nonlinear fiber optics has resulted in a num
of breakthroughs that revolutionized the communications
pabilities. However, many fundamental aspects of nonlin
interactions of light with matter are still poorly understoo
Of particular interest is the resonant coupling between
optical field and the natural oscillation modes of its propa
tion medium, which naturally yields both nonlinear and no
instantaneous responses. The stimulated Raman scatt
~SRS! process is a typical example of resonant light-ma
interaction.

In optical fibers, SRS exhibits a particularly complex d
namics, mainly because it is accompanied by the optical K
effect, always of the same order of magnitude, and the gr
velocity dispersion@1,2#. Simplified models have thus bee
introduced in a preliminary approach of regular tempo
pattern formation. We can distinguish three main them
among the vast Raman literature.

~i! In the context of short pulse propagation in optic
fibers, SRS was first considered as a perturbation to the
tical Kerr effect and group velocity dispersion. Its modeli
then calls for a perturbed nonlinear Schro¨dinger~NLS! equa-
tion, which allows an improved description of intrapulse R
man scattering, including the self-frequency shift observ
during optical soliton propagation@3,4#. Stationary shock-
wave solutions have been exhibited in both the normal~posi-
tive! @5,6# and anomalous~negative! dispersion regimes
@7,8#.

~ii ! In SRS lasers or amplifiers, two optical compone
are spectrally distinguishable, namely, the pump and its s
tered Stokes wave. The problem is more complicated an
usually described through two coupled NLS equations
counting for the Raman process but assuming the mat
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excitation to respond instantaneously; we will refer to this
the ‘‘standard model’’ of SRS in optical fibers@9#. A family
of shock-wave solutions of the dispersionless problem
been identified@10# and an analytical bright-dark solitary
wave pair solution has even been exhibited in the full pro
lem ~SRS, Kerr effect, and dispersion! @11#.

~iii ! In gases, the optical Kerr effect and the dispers
can usually be neglected. On the other hand, the resp
time of the medium, typically in the picosecond range,
comparable to the characteristic evolution time of the opti
envelopes and the dynamics of the vibrational modes m
be taken into account. Their noninstantaneous respons
described through an additional equation for the material
citation, besides the two equations for the optical waves
this pure three-wave resonant model the laser pump sti
lates the scattered Stokes wave through the material ex
tion @12,13#. Transient SRS was considered in this conte
@14# and three-wave soliton behavior has been predicted@15#
and subsequently observed@16#. Moreover, the three-wave
resonant interaction in presence of dispersion~or diffraction!
is of particular interest at present in nondegenerate para
ric interactions@17#.

The purpose of this paper is to investigate the solita
wave dynamics of the stimulated Raman backscattering
cess in the frame of a more general ‘‘inertial model’’ a
counting for the noninstantaneous Raman response,
optical Kerr effect, and the group velocity dispersion@2#. To
a certain extent, this work bridges approaches~ii ! and ~iii !
discussed above. A different class of stable three-wave
herent solitary solutions is presented. Inferring from t
well-known NLS-like soliton dynamics@6#, one should ex-
pect that thevelocityof the traveling-wave solution would b
irrelevant. It is indeed the case for the SRS solitary structu
described by the standard model; however, in the iner
model, the three-wave resonant interactionbreaks the exis-
tence of the gauge transformationresponsible for this prop-
erty. The velocity of the solitary wave thus becomes a r
evant parameter even in dispersive media. In order to ana
2548 © 1998 The American Physical Society
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PRE 58 2549FAST SOLITARY WAVES AGAINST SLOW INERTIAL . . .
its selection mechanism, we extend the Kolmogoro
Petrovskii-Piskunov procedure@18–20#, which proved quite
powerful in nonlinear diffusion problems@21,22#. These
three-wave solitary structures are intrinsically dissipative a
proved to be robust with respect to external perturbatio
they can be considered asattractors in spatially extended
media.

We also distinguish the usual convective Raman insta
ity and a different ‘‘inertial instability.’’ The former origi-
nates in the three-wave coupling and is characterized by
velocity of the leading front~Sec. IV!; it can be saturated by
the depletion of the pump. The inertial instability, which
analyzed in Sec. V, can avoid the depletion of the pump
originates in the coupling between the optical Kerr effect a
the noninstantaneous material response and thus arises
in the absence of dispersion; this is a major difference fr
the well-known modulational~Benjamin-Feir! instability,
which is intimately related to the group velocity dispersi
@9#.

The long-term evolution of the three-wave interaction
ruled by the two competing instabilities. When the grow
rate of the inertial instability dominates, the interacti
evolves asymptotically towards a chaotic dynamics. Oth
wise, the system self-structures in a three-wave soliton
behavior. This self-similar superluminous motion th
emerges from the chaotic dynamics, which propagates a
luminous velocity; the velocity of the leading front of a pul
thus governs its whole asymptotic dynamics.

II. INERTIAL MODEL

Considering the nonlinear effects as perturbations to
linear propagation, the optical fields can be described
weakly interacting wave packets through the slowly vary
envelope approximation. The equations governing the ev
tion of the optical fields are derived following a usual a
proach that leads to NLS-like equations@9# and takes into
account the Kerr effect and the group velocity dispersi
Since the material response time is very short~about 75 fs in
silica!, it is neglected in most models of stimulated Ram
scattering in fibers as the typical pulse width lies in the
cosecond range and above. Most recently, more comp
models have underlined the relevance of the noninstantan
of the medium response when the pump and Stokes w
can be distinguished@1#. We have discussed this approxim
tion in a previous work and shown that this nonlinear iner
response can dominate the linear group velocity disper
even in the picosecond regime for strong enough pump p
ers ~typically several watts! @2#. In polarization-maintaining
single-mode fibers, effective parameters account for the
space-time dynamics of SRS through this one-dimensio
inertial model, which describes the Raman process throu
resonant interaction between the optical fields and the na
vibrational modes of the medium. An additional equati
describes the excitation of a collection of harmonic osci
tors coherently driven by the applied optical field@23,4#.

While most previous studies dealt with forward SRS,
will consider the backward configuration also of interest
SRS’s sister interaction, namely, the stimulated Brillou
scattering~SBS! for which earlier studies have revealed
rich nonlinear dynamics, including spatiotemporal chaos@24#
-

d
s;

l-

he

It
d
ven

r-
e

he

e
s

u-

.

n
-
te
ity
es

l
n
-

ll
al
a

ral

-

r

as well as solitonic behaviors@25,26#. We are interested her
in the resonant case, where the SRS process couples a p
Ep(vp ,kp) and its backscattered Stokes waveES(vS ,kS) to
a material responseEa(va5vp2vS ,ka5kp1kS) propor-
tional to the molecular polarization and with the dimensi
of an electric field. The three coupled equations thus rea
dimensionless units

~] t1]x1 ir] tt1mp!Ep52ESEa1 ik@ uEpu212uESu2#Ep ,

~1a!

~] t2]x1 ir] tt1mS!ES5EpEa* 1 ik@ uESu212uEpu2#ES ,
~1b!

@~112iama!] t1ma#Ea5EpES* , ~1c!

where the complex envelope amplitudesEi5uEi ueif and the
time t, spacex, and damping rateg i are normalized to the
constant pump inputE05uEcwu and to the SRS coupling
constant K ~5509 m sec21 V21 in silica fibers! @Ei /E0
→Ei , tKE0→t, xcKE0 /n→x, and g i(KE0)21→m i ( i
5p,S,a)#. n is the linear refractive index~effective index
n>1.46! and the Kerr parameterk5n2vpE0/2nK is propor-
tional to the nonlinear refractive coefficientn2 (51.22
310222 m2/V2). The dispersion parameter isr
5k9KE0c/2n, where k95]2k/]v2, and finally a
5(KE0/2va) appears as a detuning parameter. We also
fine the phase mismatchF5fp2(fS1fa) ~Appendix A!.
The nonlinear Raman and Kerr processes can be quan
tively compared in steady regimes@or in the frame of the
standard model, obtained through the adiabatic approxi
tion of Eq. ~1c!# by replacing in Eqs.~1a! and ~1b! the ex-
pressionEa5EpES* /ma ; in fibers, they are always of the
same order sincekma>4 ~whereaskma>1022 and the dis-
persion can be neglected in the SBS case!.

In very long~semi-infinite! media, a constant pump leve
is necessary to compensate for the optical and mate
dampings, but can be achieved in a simple configuration o
if one neglects the damping of the pump wave. We will th
make this approximation (mp50) which is locally legitimate
as long as the interaction times~practically, the width of the
considered structures! are small compared tomp

21, a condi-
tion always verified in low loss optical fibers.

III. NUMERICAL THREE-WAVE DYNAMICS

One cannot exhibit explicit analytical solutions of syste
~1! since the dissipative three-wave model is not integra
@27#. Before looking for an alternative theoretical analys
let us first investigate numerically, in the frame of the inert
model and for various initial conditions, the existence a
robustness of solitary-wave solutions. In this paper, for
sake of simplicity, we will discuss only the normal dispe
sion regime, in which no solitary solutions have been exh
ited in the frame of the standard model of SRS. Our ba
problem, of particular interest for amplification devices,
the propagation of an initial localized Stokes pulse@ES
5sech(kx)# with wave-front slopek, in the presence of a
counterpropagating continuous pump.
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2550 PRE 58ANTONIO PICOZZI, CARLOS MONTES, AND ERIC PICHOLLE
A. Solitary-wave self-structuring

We solve numerically Eqs.~1! by following the charac-
teristics in the comoving Stokes frame@26#, the optical dis-
persion being obtained by a five-point finite differen
scheme@27#. In Fig. 1 we plot the typical evolution in the
normal dispersion regime (k951 ps2/km) of a sechant
Stokes shape of slopek50.35, which corresponds to a 25-p
pulse for a peak amplitudeES510 MV/m and the same con
tinuous pump level. During the first stage of the interact
(t,100), the Stokes field and the material excitation
amplified in the parametric regime, here defined by a ne
constant pump wave@Ep(x,t)51#. In a second time the tota
energy of the Stokes and material fields becomes sufficien
deplete the pump (t.200). The backward configuratio
breaks thet→2t symmetry of the problem and gives rise
an asymmetric amplification process: The leading edge
the pulse follows a strong amplification to the detriment
the trailing edge where the pump is depleted, yielding sup
luminous Stokes and material fronts. In the long-term evo
tion, the system self-structures in a superluminous thr
wave solitary structure of constant width. Th
superluminous solitary motion can be viewed as the resu
the convective amplification of the leading edge of t
Stokes and material pulses, whereas their rears are atten
@25#; no information can be transported via thispulse reshap-
ing process@28#. Figure 2 describes the evolution of a na
row structure artificially superimposed on the solitary so
tion; in the~luminous! reference frame of the Stokes energ
we observe the separation of a stationary localized de
that propagates at the luminous velocity from the solit
wave drifting away with its superluminous velocity. Th
solitary structure and the defect behave as two indepen

FIG. 1. Self-structuring of a three-wave solitary solution@nu-
merical computation of Eqs.~1! (k50.35) in the luminous Stokes
reference frame#: ~a! transient amplification stage and~b! asymmet-
ric solitary structure, whose superluminous velocity is associa
with the drift towards the left of the luminous window~for better
visibility, Ea has been magnified 53!.
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objects, the former being asymptotically stable and the la
rapidly damped, since the depleted pump is insufficient
compensate for the losses in the trailing edge. As in the S
case, this decoupled evolution strongly contributes to the
bustness of these dissipative solitary structures@29#.

The solitary solution presented here is valid in the norm
dispersion regime and is thus completely different in nat
from the solution exhibited in the frame of the standa
model@11#. The latter still depends on a Kerr-dispersion b
ance, characteristic of the NLS-based equations, while
SRS compensates for the losses: the Stokes and pump
must have bright and dark soliton profiles and propaga
respectively, in the anomalous and normal dispersion
gimes. On the other hand, the present solution is closer to
regular three-wave solitons observed in gases@16#, even if
the dissipation is strong and the intensity profiles are affec
by a complicated phase dynamics induced by the Kerr
dispersion effects~while the pure three-wave resonant inte
action involves only real amplitudes@13,26#!.

The solution in Ref.@11# is characterized by a full recon
struction of the pump~hyperbolic tangent!, which is thus
able to destabilize the far tail of the Stokes pulse. This is
the case here: The solitary-wave trajectory in the phase s
links anunstablefixed point ~far leading front:uEpu51, ES
5Ea50! to a fix point with a pump power below thresho
~far pulse tail: uEpu>0, ES5Ea50! and thus is always
stable. Locally, the passage of the solitary wave can be
scribed as thetransition of the system toward a stable stat
which again emphasizes its robustness.

Let us note the strong asymmetry of the Stokes envel
that characterizes the dissipative nature of the solitary-w
solution@30#. In fact, the dissipation is intrinsically related t
the noninstantaneous response of the medium, as can be
in Eq. ~1c!, wherema

21 represents the lifetime of the materi
excitation. A specific invariant characterizes the solitary m
tion. We show in Appendix B that the pulse energy of t
Stokes and material fields, defined asWS,a5*2`

1`uES,au2dt,
satisfy the relationship

]jWS52maWa22mSWS14iamaE
2`

1`

Ea* ]tEadt, ~2!

where j52x and t5t1x are retarded variables. Due t
their conservative nature, the optical Kerr and dispersive

d

FIG. 2. Evolution of a defect artificially superimposed onto t
solitary wave. The luminous localized defect slides on the supe
minous tail of the solitary structure.
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PRE 58 2551FAST SOLITARY WAVES AGAINST SLOW INERTIAL . . .
fects do not play any role in this relation. A solitary-wav
behavior calls for the three fields to be in their asympto
steady state, thus]jWS50 and Eq.~2! yields the expression
of the invariant; it has been used as a criterion for
asymptotic nature of the solitary solutions and to check
accuracy of the numerical scheme.

Phase dynamics of the solitary wave

We plot in Fig. 3 the profiles of the modulusuEp,Su of the
optical fields and their respective phasesfp,S,a in the
asymptotic solitary regime for two values of the interacti
time. The key parameter characterizing the coherence o
three-wave interaction is the phase mismatchF. The simu-
lations show that, despite the complex~but fairly comple-
mentary! phase structure of the Stokes and the mate
fields,F remains almost constant over the whole interact
range. It is worth noting that this classical feature of the p
three-wave resonant interaction is still valid in the prese
of optical Kerr and dispersion effects, despite the fast ro
tion of the phases they induce~Appendix A!. Between
t51000@Fig. 3~a!# andt51600@Fig. 3~b!#, the three moduli
remain unchanged, but the phases evolve rapidly. The
cept of attractor is strongly related to the dissipative nat
of the interaction and thus is valid only as far as the modu
is concerned. The apparent Stokes frequency is stable in
body of the pulse, but rapidly evolves in its trailing edge. W
plot in Fig. 4 the phase portrait of the Stokes field in its ow
reference frame@ReES, Im ES# at timet51400. The rotation
of the Stokes phase is inverted on a particular pointA of the

FIG. 3. Profiles of the modulusuEp,Su and phases sinfp,S,a in the
solitary regime for~a! t51000 and~b! t51600. The three phase
follow a complex dynamics, but the phase mismatch cosF remains
constant.
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solitary wave. This complex dynamics contrasts with t
smooth phases characteristic of NLS like solutions.

B. Solitary-wave emersion from chaotic dynamics

For shorter pulses the three-wave interaction becomes
coherent and is no longer able to keepF constant. We plot in
Fig. 5 the evolution of a secant Stokes pulse ten times n
rower than in the previous case. The asymptotic evolution
the Stokes wave packet is completely different. The amp
cation of the Stokes wave is accompanied by an asymme
distortion that evolves asymptotically towards an erratic
havior and the overall width of the structure keeps increas

FIG. 4. ~a! Phase portrait of the complex Stokes field in t
solitary regime (t51400). The rotation of the phase is inverted
point A. ~b! A zoom of A.

FIG. 5. Same as Fig. 1, but with a ten times narrower Sto
pulse (k518). The inertial instability appears at the peak and yie
asymptotically a chaotic behavior, while the pump remains ess
tially undepleted.
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2552 PRE 58ANTONIO PICOZZI, CARLOS MONTES, AND ERIC PICHOLLE
in time. The chaotic nature of the dynamics has been c
firmed in Ref. @2# through the exponential divergence of
perturbed solution from the unperturbed one. Here we fo
our attention on the origin of this inertial instability, whic
becomes dominant at strong pump power and whose crea
is directly related to the coupling of the Kerr effect with th
noninstantaneous response of the medium, as will be dem
strated in Sec. V through a stability analysis. Unlike t
usual modulational~Benjamin-Feir! instability that originates
in dispersive Kerr media,the inertial instability can grow
even in the absence of group velocity dispersion.

Let us remark that in contrast to the previous case a
lyzed in Fig. 3, the intensity and the phase of the pump fi
remain almost constant in the whole interaction region (Ep
51). This is a consequence of our counterpropagating c
figuration: The total energy of the Stokes pulse is not su
cient to affect noticeably the pump evolution during the sh
interaction time, comparable to the pulse width~dispersive
walkoff may yield a similar effect for shorter pulses in th
copropagative scheme!. On the contrary, the dynamics of th
Stokes wave and the material excitation is rather comp
~Fig. 6, t5400!. The interaction is coherent at the wings
the Stokes pulse (F50): The phases follow a regular evo
lution along the propagation. However, with higher Stok
intensity, the peak of the pulse develops the instability t
evolves towards a chaotic behavior. In this regionFÞ0:
The chaotic dynamicsbreaks the phase matchingof the three
waves; the pump-to-Stokes conversion efficiency can e
be averaged to zero, thus avoiding the depletion of the pu
This situation remains unchanged even for long propaga
distances.

Superluminous drift

The asymptotic evolution of the three-wave interacti
seems strongly related to the initial Stokes pulse width. T
fully developed solitary and chaotic patterns presented
Figs. 1 and 5 correspond, respectively, to an initial wa
front slopek50.35 and 18. We also investigate intermedia
values. Figure 7 illustrates the evolution of the three wa
for k50.75, all other parameters being the same as in Fig
and 5. The first stage of the interaction follows a scena
similar to that in Fig. 5 and the inertial instability appea
(t>300). Nevertheless, the overall Stokes energy is n
sufficient to deplete noticeably the pump. The asymme

FIG. 6. Profile of uEp,Su, sinfp,S,a , and cosF (t5400). The
three-wave interaction is coherent~incoherent! at the wings~peak!
of the pulse.
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amplification process can thus happen: The leading fron
the Stokes pulse follows a strong amplification to the de
ment of the trailing edge where thedepleted pump is unsuf
ficient to sustain the interaction. Therefore, the inertial insta
bility cannot fully develop and is relegated to the trailin
edge of the pulse, while the wave front asymptotica
reaches a steady solitary attractor propagating with a c
stant superluminous velocity.

In summary, due to its superluminous nature, the regu
part of the three-wave structure drifts away from its chao
part, which propagates at the luminous velocity. This idea
the same as for the separation of a defect whose charac
tic time shorter than the width of the solitary structure allo
a decoupled evolution~Fig. 2!. The chaotic behavior pre
sented in Fig. 5 is also characterized by a short time sc
and similarly slides on the pulse tail at the luminous veloc
to be damped in a finite time.

IV. ASYMPTOTIC ANALYSIS

So far we have qualitatively established that a variation
the initial condition, such as the width of the injected Stok
pulse or the pump intensity, drastically affects the spa
temporal evolution of the three-wave interaction and that
velocity of the structure has a key role in its asympto
behavior. The problem is now to find a quantitative criteri
to describe theselectionbetween the solitary and chaot
behaviors. One parameter that seems to play a fundame
role is the growth rate of the inertial instability. Also releva
is thevelocityof the leading front of the Stokes field, whic
can be understood as the growth rate of the SRS convec
instability.

FIG. 7. Same as Figs. 1 and 5, but with an intermediary ini
pulse (k50.75): ~a! onset of the inertial instability and~b! the
superluminous front emerges from the chaotic dynamics an
solitary-wave attractor self-structures.
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A. Velocity: A relevant parameter

Brillouin and Sommerfeld define thesignal and front ve-
locities at which the half-maximum wave amplitude and t
leading front of a wave packet would move, respectiv
@31#; the former is of interest to describe the ‘‘luminous
instability discussed above, while the latter characterizes
behavior of the evading ‘‘superluminous’’ part of the puls
Thereafter,V will denote the front velocity. In the case of
solitary structure, both are equal to thegroup velocity at
which the peak of the pulse would move, but generally no
the energyvelocity @28#.

A fundamental difference distinguishes the solitary so
tions reported in classes~i! and ~ii ! of Sec. I, which result
from a generalized NLS problem, from the characteristic
lutions of the resonant three-wave problem reported in c
~iii !. It is straightforward that any solutionu of the NLS
equation

iux5 1
2 utt1uuu2u ~3!

satisfies the gauge transformation

u~x,t2x/V!5u~x,t !exp@ i ~x/2V21t/V!#. ~4!

This means that the search for solitary-wave behavior ca
limited to the luminous velocity (V51) case because ‘‘mov
ing’’ solutions (VÞ1) are derived from luminous one
through the transformation~4! @6#. We checked it even in
complex representations such as the standard model of S
Therefore, a given solitary solution of a NLS problem, ch
acterized, for instance, by the pulse width, can travel at
velocity, which is thus irrelevant.

The situation is completely different if one considers t
pure three-wave resonant interaction~r50, k50! which
breaks the existence of the gauge transformation, the shape
of the solitary wave being thus intimately related to its v
locity @13,26#. The inertial model presents the ingredients
both NLS and three-wave problems. The velocity of the s
tary wave thus becomes a relevant parameter even in dis
sive propagation media.

B. Kolmogorov-Petrovskii-Piskunov procedure: Front velocity
selection

When a physical system presents an instability, it is i
portant to understand how it will evolve for long interactio
times and then how the nonlinear stage of the interac
might saturate the instability. This problem has been d
cussed by Kolmogorov, Petrovskii, and Piskunov in the c
text of nonlinear diffusion problems@18#. The Kolmogorov-
Petrovskii-Piskunov~KPP! method allows us to determin
the asymptotic velocity of a front, when the transient ha
died out, through a linear analysis. Of particular interest
nonintegrable equations, it has been successfully applie
the pure dissipative three-wave interaction@20#. Above the
SRS threshold, the Stokes wave is unstable, exponent
growing in the linear parametric regime@Ep(x,t)51#. When
the instability is saturated by depletion of the pump, a s
tonlike structure can appear, as discussed above. The
asymptotic procedure then allows us to determineab initio
the front velocity in the linear parametric regime since t
leading edge of the Stokes envelope always remains, by
y
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struction, in the linear undepleted pump regime. If and wh
a solitary regime is reached, this value is necessarily
velocity of the whole structure. Note thatthe KPP procedure
describes only the leading front of the Stokes fieldand gives
no information on the inertial instability that may arise in th
body of the pulse.

Assuming an undepleted pump wave (Ep51) and consid-
ering only the low-amplitude region where the nonlinear R
man and Kerr processes can be linearized, Eqs.~1! can be
written

~] t2]x1 ir] tt1mS22ik!~] t1ma!ES,a5ES,a . ~5!

The solution of this linear problem may be expressed as

ES~x,t !5E
C
ẼS~k!exp@g~k!t#exp~kx!dk, ~6!

wherek is complex andẼS(k) is the Fourier transform of the
initial Stokes field;g5g(k) is obtained through the comple
dispersion relation that characterizes the linear problem@ES
}exp(gt1kx)#:

~g2k22ik1 irg21mS!~g1ma!51. ~7!

Looking for traveling-wave solutions with velocityV @h5x
1Vt, n5t#, we write

ES~h,n!5E
C
ẼS~k!exp@g~k!2kV#n exp~kh!dk. ~8!

This linear solution holds for long interaction times an
gives the asymptotic velocity of the pulse wave front. T
initial Stokes envelope has an exponential leading front
the functionẼS(k) has a pole fork5k0 . In fact, as a result
of the three-wave parametric instability, the asympto
wave-front structure grows exponentially. On the other ha
the functionf (k)5g(k)2kV has a saddle point and the in
tegral ~8! can be calculated by the steepest descent met
the competing contributions of the pole and the saddle p
are described in detail in Ref.@26#. It can be shown that the
saddle point is the dominant contribution only for extreme
short initial Stokes pulses~typically in the femtosecond
range! where the slowly varying envelope approximation
violated and the present analysis is irrelevant. Then, for s
ations of physical interest for the inertial model, the integ
is always dominated by the contribution of the pole of t
function ẼS(k). The computation of Eq.~8! then reads

ES~h,n!}ẼS~k5k0!exp@g~k0!2k0V#n exp~k0h!. ~9!

It describes the asymptotic behavior~largen! of the leading
front of the Stokes envelope where the parametric appr
mation is always valid (Ep51). As discussed before~Fig.
3!, the phases arenot stationary in the moving reference
frame of velocityV, even when the superluminous attract
is already attained. Therefore, the steady-state conditio
the solution~9! holds only for the amplitudeuESu and reads

V* ~k0!5
Re@g~k0!#

Re~k0!
~10!
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@whereas the phase velocity isVf5Im g/Im k and the group
velocity Vg5](Im g)/](Im k)#. The front velocityV acts as a
stabilizing parameter in Eq.~9!: V,V* corresponds to an
exponentially growing pulse andV.V* corresponds to a
damped solution. Relation~10! thus defines aneutral veloc-
ity, for which the leading edge of the traveling wave neith
grows nor decays in an amplifying medium~this quantity,
although unusual in optics, is useful in nonlinear diffusi
problems@21#!.

Thus, whenever a steady regime is attained, the velo
of the three-wave solitary structure must be exactlyV* ,
which in turn is uniquely determined by the initial wav
front slopek0 of the Stokes pulse. For a given set of para
eters (mS,a ,r,k) the system is able to self-structure into
continuous family of dissipative structures characterized
the wave-front slopek0 and the corresponding neutral velo
ity V* (k0). If we neglect the group velocity dispersion~r
50!, we can generalize the expression obtained in Ref.@26#
for the pure three-wave resonant model and derive an
plicit analytical solution forV* accounting for the optica
Kerr effect:

V* ~k!5
kr2ma2mS1G

kr
, ~11!

where

G5A21 1
2 u222k21 1

2 A@4~12k2!1u2#2116k2u2,

u5kr1ma2mS .

A formal calculation gives a much more complicated e
pression ofV* whenrÞ0; we plot in Fig. 8V* versusk0
for the same value ofr as in Figs. 1 (k050.35) and 7 (k0
50.75). V* has also been evaluated numerically for a nu
ber of realizations. The discrepancy (Vtheor* 2Vnum* )/Vnum* be-
tween the numerical and theoretical@Eq. ~10!# values ofV*
was always lower than 0.1%. Thesteepestfront ~large k0!
travelsmore slowlythan the smooth front. This is a gener
result, also found for the amplitude or Swift-Hohenbe
equations@22#; however, in this last case, only the steep
front is stable since the initial condition is spatially bound
@26#.

FIG. 8. VelocityV* vs wave-front slopek0 evaluated from Eq.
~10!. The steeper fronts travel more slowly than the smooth on
r

ty

-

y

x-
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-

t

Neutral velocity of the chaotic structure

Even if the whole nonlinear solitary structure reaches
asymptotic steady state only after a long transient~Figs. 1
and 7!, the KPP procedure assumes that the pulse wave f
travels at the velocityV* (k0) from the very beginning of the
interaction if its initial shape is exponential, which is tru
even when the body of the pulse exhibits a chaotic evoluti
Therefore, the KPP method always allows us to determ
V* , even in the chaotic case. We see here its discriminatin
role: For a short initial Stokes pulse~largek0!, V* (k0) is too
small for the structure to drift away from the chaotic area. It
is thus crucial to evaluate the growth rate of the inertial
stability in order to compare it toV* 21 and determine the
long-term evolution of the three-wave interaction.

V. INERTIAL INSTABILITY

In this section we thus focus our attention on the insta
ity that arises on the top of the Stokes pulse as discusse
Sec. III B. We investigate the nature of this kind of instab
ity, which is intimately related to the combined actions of t
optical Kerr effect and the noninstantaneous response of
propagation medium.

The stability analysis is carried out following the usu
procedure outlined in Ref.@9# for the modulational instabil-
ity. The numerical simulation reported in Figs. 5 and
shows that the modulus and the phase of the pump w
remains constant as the Stokes field develops the instab
This approximation holds even for large propagation d
tances; it allows us to setEp(x,t)51 in the whole interaction
range. Equations~1! then take the simplified form

@~112iama!]t1ma#@]j1 ir]tt1mS#ES

5ES1 ik@~112iama!]t1ma#@ uESu212#ES , ~12!

where j52x and t5x1t still are the retarded variables
Equation~12! describes the propagation of the Stokes field
the linear Raman regimein the presence of the noninstant
neous response of the medium, group velocity dispers
and Kerr nonlinearity@whereas in Eq.~5! both Raman and
Kerr processes were linearized#. In order to get more physi-
cal insight, we will take into account only aminimumset of
physical ingredients and neglect the amplification of t
Stokes envelope; this supposes that the Stokes enve
reaches a quasicontinuous level~in Fig. 5 ES>1.8 at t
5400!, conserved from then on. We therefore assume
mamS51 and write

]jES52 ix]ttES2~11 ib!@]tj1 ix]ttt1]t#ES

1 ih@11~11 ib!]t#@ uESu212#ES , ~13!

where the space and time variables have been norma
~tm→t, j/m→j! andh5kma , x5rma

3, andb52ama . In
the stationary case, Eq.~13! reduces to

]jES0
5 ih@ uES0

u212#ES0
, ~14!

whose solution is given by

ES0
~j!5q exp@ ih~q212!j#, ~15!

.
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whereq5ES0
(j50). We will now consider the evolution o

the perturbationa defined asES5ES0
(j)1a(j,t); lineariz-

ing Eq. ~13! with respect toa yields

]ja52 ixatt2~11 ib!@]tj1 ix]ttt1]t#a

1 ih@ma1ES0

2 a* 1~11 ib!~m]ta1ES0

2 ]ta* !#,

~16!

wherem52(q211). In order to avoid theES0

2 terms we use

the variable d(j,t)5a(j,t)exp@ih(q212)j#. Dividing
d(j,t) into its real and imaginary parts (d5u1 iv) and con-
sidering the usualansatz d5d0 exp(lj1ivt), we get the
dispersion relation

$ ivb~l11!2@2hq21xv2#~11 iv!%

3@xv2~11 iv!2 ibv~l11!#

5@l~11 iv!1 iv1 iv3bx#

3@l~11 iv!1 iv1 ivb~xv212hq2!#. ~17!

The stationary solution~15! is unstable with respect to
perturbation of frequencyv wheneverl~v! has a positive
real part. The growth rate of the inertial instabilityG
5Rel is a symmetric function of the sideband detuningv.
Figure 9 represents the dependence ofG on v and the Stokes
amplitudeq in the absence of the group velocity dispersi
(x50); the other parameters are those used in all prev
simulations. Below a cutoff frequencyvmax, the instability
occurs without threshold for anyq. The potentially unstable
frequency band enlarges as the Stokes amplitude incre
The maximum growth rateGmax is also an increasing func
tion of q and of the cw pump levelE0 . The stationary solu-
tion is then unstableeven in the absence of the group veloc
dispersion.

We plot in Fig. 10 the instability growth rateG in the
presence of the same positive dispersion as in the nume
simulations. Its main feature is to introduce a lower cut
frequencyvmin , below which the instability is quenched
The noninstantaneous response of the medium then des
lizes the stationary solutioneven in the normal dispersio
regimewhere conventional modulational instability does n

FIG. 9. Inertial instability growth rate vs modulational perturb
tion v and Stokes amplitudeq ~analytical,r5x50!.
s

es.

al
f

bi-

t

occur. The growth rateG decreases as the relative weight
dispersion and inertial SRS increases.

The peak gainGmax is obtained forv0>70 in units of
time (KE0)21 corresponding to the normalization adopted
Eqs. ~1! and in the numerical simulations. Therefore, t
characteristic time scale of the instabilityv0

21 is much
smaller than the widtht0 of the Stokes pulse~v0

21>t0/20 in
Fig. 5!. This point justifiesa posteriori the assumption of a
stationary Stokes wave, which allowed our stability analys

This analysis gives information on the nature of the ins
bility but does not describe the long-term evolution of t
interaction that proved to be chaotic in some cases@2#. Nev-
ertheless, it is worth noting that its time scalev0

21 fits fairly
well the typical time scale of chaotic dynamics. This su
gests that further insight might be obtained by means o
modal truncation of Eq.~12! to a finite number of harmonic
components@32#.

VI. DISCUSSION

The analytical tools developed in Secs. IV and V no
allow us to compare the relative weight of the Raman a
inertial instabilities. As expected, the ratio (V* 21)/G deter-
mines the asymptotic evolution of the three-wave interacti
G being evaluated in units of time (KE0)21 @normalization
adopted in Eqs.~1!#. WhenG.V* 21 the inertial instability
overcomes the Raman instability and the interaction evol
asymptotically toward a chaotic regime~in Fig. 5 q>1.8,
G5431023, andV* 2158.531025!. In the opposite case
the large velocity of the leading front is responsible for pum
depletion, which freezes the inertial instability~in Fig. 7 q
>2.5, G5631023, andV* 2151731023!.

Thus the asymptotic evolution of a given initial conditio
is fully determined and predictable through a linear analy
ab initio, in very good agreement with the nonlinear nume
cal simulations. We verified that the KPP assertion, althou
rarely stated explicitly in nonlinear optics, still holds in th
rather complex case of interest for stimulated Raman proc
in fibers, namely, for the strong three-wave interaction in
presence of the optical Kerr effect and chromatic dispers
Here it means that the particular front slope correspondin
the neutral velocityV* is selected from the very beginnin

FIG. 10. Same as Fig. 9, but in the presence of normal gr
velocity dispersion.
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of the interaction and remains the front velocity of the who
structure up to asymptotic times. Moreover, we could exte
the predictive power of this assertion by comparingV* 21
to the gainG of the inertial instability, which has no thresh
old and is also active from the beginning.

The transition from the chaotic to solitonlike structur
might be observed in a typical backward amplification e
periment. For a typical fiber~effective area approximatel
equal to 100mm2 at l51.32mm!, the required continuous
pump power, quite strong but still acceptable, is around 2
for a length of 300 m. A subpicosecond sech-like sig
should break down in a very irregular, poorly amplified ou
put pulse, whose erratic shape would be very sensitive to
initial conditions and vary from one realization to anoth
On the other hand, longer signals, typically 10 ps and abo
should yield solitary-wave behaviors and very repetitive o
puts after an efficient amplification.

VII. CONCLUSION

In summary, we have investigated the dynamics of
SRS process in the frame of the inertial model. We ha
presented a class of dissipative coherent three-wave sol
structures that arise through a balance between three dis
physical processes: the stimulated Raman scattering, ta
into account the noninstantaneous material response, the
tical Kerr effect, and the dispersive effect. The three-wa
resonant process breaks the gauge transformation speci
the NLS class of equations. The velocity of the solitary wa
then plays a key role and governs the long-term evolution
the three-wave interaction, through an original evasion p
cess, luminous defects or chaotic tails being left behind
the solitary structure whenever its superluminous velocity
sufficient to take over the instability growth. Besides th
solitonlike motion, the Kerr process coupled to the non
stantaneous response of the medium yields a different
of inertial instability that evolves asymptotically towards
chaotic behavior.

APPENDIX A

Representing the complex fieldsEi by their real ampli-
tudes and phases@Ei5Ai exp(ifi)# and considering the
phase mismatchF5fp2(fS1fa), we can rewrite system
~1! as

~] t1]x!Ap22r] tAp] tfp2rAp] ttfp2mpAp

52ASAa cosF, ~A1a!

~] t2]x!AS22r] tAS] tfS2rAS] ttfS2mSAS

5ApAa cosF, ~A1b!

] tAa22amaAa] tfa1maAa5ApAS cosF, ~A1c!
pt
d

-

l
-
he
.
e,
-

e
e
ry

nct
ng
op-
e
to

e
f
-
y
s

-
d

Ap~] t1]x!fp1r] ttAp2rAp~] tfp!2

5ASAa sin F1k~Ap
212AS

2!Ap , ~A1d!

AS~] t2]x!fS1r] ttAS2rAS~] tfS!2

5ApAa sin F1k~AS
212Ap

2!AS , ~A1e!

Aa] tfa12ama] tAa5ApAS sin F. ~A1f!

The amplitudes and the phases are resonantly cou
through the phase mismatchF. The system generally tend
to maximize the pump-to-Stokes conversion efficiency a
thus to selectF50 for which the SRS gain ismaximum.
F5p corresponds to reverse energy transfer from
Stokes to the pump wave.

APPENDIX B

Starting from Eqs.~1!, we multiply each equation by the
corresponding complex conjugate field, yielding

~2]t2]j12mp!uEpu252ESEaEp* 2 irEp* ]ttEp1c.c.,
~B1a!

~]j12mS!uESu25EpEa* ES* 2 irES* ]ttES1c.c.,
~B1b!

~]t12ma!uEau25EpEa* ES* 22iamaEa]tEa*

2 iaEa]ttEa* 1c.c., ~B1c!

wherej52x andt5t1x are the retarded variables and c
denotes the complex conjugate. The energies of the mat
and Stokes fields are proportional to

WS,a5E
2`

1`

uES,au2dt. ~B2!

Integrating in time the above expressions and assuming
Stokes and material envelopes to be localized@ES,a(t
→6`)50# yield

]jWS52maWa22mSWS14iamaE
2`

1`

Ea* ]tEadt.

~B3!

When the three fields reach an asymptotic steady state
integrated Stokes energy becomes constant and Eq.~B3!
yields the expression of the invariant

I 52mSWS1maWa12iamaE
2`

1`

Ea* ]tEadt. ~B4!

Note that *2`
1`Ea* ]tEadt52*2`

1`]tEa* Eadt; therefore,
*2`

1`Ea* ]tEadt is a pure imaginary number.
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@16# K. Drühl, R. G. Wenzel, and J. L. Carlsten, Phys. Rev. Le
51, 1171~1983!.

@17# A. V. Buryak, Y. S. Kivshar, and S. Trillo, Phys. Rev. Lett.77,
5210 ~1996!; A. V. Buryak and Y. S. Kivshar,ibid. 78, 3286
~1997!; R. A. Fuerst, D.-M. Baboiu, B. Lawrence, W. Torue
las, G. I. Stegman, S. Trillo, and S. Wabnitz,ibid. 78, 2756
~1997!.

@18# V. G. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Bu
Moscow State University, Math. Mechanics1, 1 ~1937!.

@19# V. G. Kamenskii and S. V. Manakov, JETP Lett.45, 638
~1987!; S. V. Manakov and V. G. Kamensky, inNonlinear
.

Evolution Equations: Integrability and Spectral Methods, ed-
ited by A. Degasperis, A. P. Fordy, and M. Lakshman
~Manchester University Press, Manchester, 1990!, p. 477.

@20# C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, Phy
Rev. E55, 1086~1997!.

@21# G. Dee and J. S. Langer, Phys. Rev. Lett.50, 383 ~1983!.
@22# W. van Saarloos, Phys. Rev. Lett.58, 2571~1987!; G. Dee and

W. van Saarloos,ibid. 60, 2641~1988!.
@23# K. J. Blow and D. Wood, IEEE J. Quantum Electron.QE-25,

2665 ~1989!.
@24# C. C. Chow and A. Bers, Phys. Rev. A47, 5144~1993!.
@25# E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. B

ineau, Phys. Rev. Lett.66, 1454~1991!.
@26# C. Montes, A. Picozzi, and D. Bahloul, Phys. Rev. E55, 1092

~1997!.
@27# C. C. Chow, Physica D81, 237 ~1995!.
@28# R. Y. Chiao, in Amazing Light, edited by R. Y. Chiao

~Springer, New York, 1996!.
@29# C. Montes, E. Picholle, J. Botineau, O. Legrand, and C. L

curas, inNonlinear Coherent Structures in Physics and Bio
ogy, edited by M. Remoissenet and M. Peyrard, Lecture No
in Physics Vol. 393~Springer-Verlag, Berlin, 1991!, p. 44.

@30# E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M
Lisak, and L. Vazquez, Phys. Rev. A49, 2806~1994!.

@31# L. Brillouin, Wave Propagation and Group Velocity~Aca-
demic, New York, 1960!.

@32# M. Haelterman, S. Trillo, and S. Wabnitz, Phys. Rev. A47,
2344 ~1993!.


